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Abstract We show that computing the crossing number and the odd crossing number
of a graph with a given rotation system is NP-complete. As a consequence we can
show that many of the well-known crossing number notions are NP-complete even
if restricted to cubic graphs (with or without rotation system). In particular, we can
show that Tutte’s independent odd crossing number is NP-complete, and we obtain a
new and simpler proof of Hliněný’s result that computing the crossing number of a
cubic graph is NP-complete.

We also consider the special case of multigraphs with rotation systems on a fixed
number k of vertices. For k = 1 we give an O(m logm) algorithm, where m is the
number of edges, and for loopless multigraphs on 2 vertices we present a linear time
2-approximation algorithm. In both cases there are interesting connections to edit-
distance problems on (cyclic) strings. For larger k we show how to approximate the
crossing number to within a factor of

(
k+4

4

)
/5 in time O(mk logm) on a graph with

m edges.

Keywords Crossing number · Rotation system · Odd crossing number ·
Independent odd crossing number · Tournaments · NP-completeness

mailto:pelsmajer@iit.edu
mailto:mschaefer@cs.depaul.edu
mailto:stefanko@cs.rochester.edu


1 Introduction

Computing the crossing number is NP-complete, as was shown by Garey and John-
son [6]. Hliněný recently proved, using a rather complicated construction, that even
determining the crossing number of a cubic graph is NP-complete [7], settling a long-
standing open problem [1].

We take a new approach to cubic graphs through graphs with rotation systems. We
show that determining the crossing number of a graph with a given rotation system is
NP-complete, and then prove that this problem is equivalent to determining the cross-
ing number of a cubic graph. This also gives a new and easy proof that determining
the minor-monotone crossing number defined in [2] is NP-complete.

The constructions used in the NP-hardness result for graphs with rotation system
and cubic graphs can be extended to work for other crossing numbers such as odd
crossing number, pair crossing number and rectilinear crossing number. In the case of
odd crossing number, the proof of correctness becomes more complex though, and for
this proof we introduce a new problem, MINIMUM TOURNAMENT ARRANGEMENT,
that should be of interest in its own right.

In particular, we can show that computing the independent odd crossing number
of a graph is NP-hard; while this result is not unexpected, it does imply that the
algebraic approach to crossing number through the independent odd crossing number
began by Tutte [24] and continued by Székely [21, 22] will not lead to polynomial
time algorithms for the independent odd crossing number (which would have allowed
us to approximate the crossing number to within a square root by a recent result [19]).

Graphs with rotation systems are of interest in their own right; we have encoun-
tered them several times during recent research projects [15, 17, 18]. For example,
at the core of our separation of the crossing number from the odd crossing number
is a two-vertex multigraph with rotation system [18]. In Sect. 5 we show that the
crossing number can be computed efficiently for a one-vertex multigraph with rota-
tion system, and that crossing number can be approximated efficiently for loopless
two-vertex multigraphs with rotation system (the problem is in polynomial time in
this case but it requires linear programming [18]). There are unexpected connections
between the two-vertex case and edit distance problems over strings. For k-vertex
multigraphs with rotation system we give an approximation algorithm to compute
the crossing number to within a factor of O(k4). We do not know whether this prob-
lem can be solved exactly in polynomial time, even for k = 3.

2 NP-hardness

Consider a graph drawn in the plane. The rotation at a vertex is the clockwise order
of its incident edges. A rotation system is the list of rotations of all vertices. We are
interested in drawings of a graph in the plane with a fixed rotation system. If G is
equipped with a rotation system, we write crrot(G), as opposed to cr(G) to denote
the fact that we only consider drawings of G that respect the given rotation system.

We also consider “flipped” rotations. Flipping the rotation at a vertex v means
reversing the cyclic order of the edges incident to v. For a graph with rotation system



we write crflip(G) if we restrict ourselves to drawings of G which respect the rotation
of G up to allowing the rotation at each vertex to flip. Trivially, cr(G) ≤ crflip(G) ≤
crrot(G).

Theorem 2.1 Computing the crossing number of a graph with rotation system is
NP-complete. The problem remains NP-complete if we allow the rotation at each
vertex to flip.

Proof We adapt Garey and Johnson’s reduction from MINIMUM LINEAR ARRANGE-
MENT to CROSSING NUMBER [6]. Given a graph G = (V ,E), a linear arrangement
is an injective function φ : V → {1, . . . , |V |} and the value of the arrangement is

∑

uv∈E

|φ(u) − φ(v)|.

Given a graph G and a number k, deciding whether G allows a linear arrangement of
value at most k is NP-complete [6, GT42].

Let us fix a connected graph G = (V ,E), with V = {v1, . . . , vn}, m = |E|, and k.
We can assume that n ≤ m (for trees the problem can be decided in polynomial
time [6, GT42]), and k ≤ m(n − 1) ≤ m2. From G we construct an edge-weighted
graph H with rotation system, as shown in Fig. 1. In a drawing of a weighted graph,
a crossing of an edge of weight k with an edge of weight l contributes kl to the
crossing number. The use of weighted edges simplifies the construction; later we will
replace each weighted edge by a small unweighted graph, obtaining a simple graph
H ′ with rotation system.

We start with a cycle (u1, . . . , u4n) with edge-weights so high that it has to be
embedded without any crossings. For every 1 ≤ i ≤ 2n we connect ui to u4n+1−i by
a path Pi of length 2 and edges of weight w. Furthermore, we connect the midpoint
ai of Pi and the midpoint ci of P2n+1−i by a path Qi = aibici of length 2 with edges
of weight w′, but replacing bici by two edges of weight w′/2 (1 ≤ i ≤ n).

Finally, we encode G as follows: for each edge vivj ∈ E we add an edge of weight
1 from bi to bj . The weight 1 edges incident to bi are inserted into the rotation at
bi between the two bici -edges of weight w′/2; among each other these edges can
otherwise be ordered arbitrarily.

This concludes the description of H with the rotation system shown in Fig. 1. We
let k′ = n(n − 1)ww′ + kw′ + m2, where w = 7m4 and w′ = 5m2. We claim that
crflip(H) ≤ k′ implies that G allows a linear arrangement of value at most k and that
this in turn implies that crrot(H) ≤ k′. Since crflip(H) ≤ crrot(H), this immediately
implies that the existence of a linear arrangement of G of value at most k is equivalent
to both crrot(H) ≤ k′ and crflip(H) ≤ k′; hence deciding either is NP-hard.

If G has a linear arrangement of value at most k, we can draw H with the given
rotation system using the linear arrangement to order the paths Qi ; this yields a draw-
ing of crossing number at most k′ (the m2 term in k′ compensates for the potential
pairwise crossings of the edges in H that represent edges in E), so crrot(G) ≤ k′.

For the other implication, consider a drawing of H with crossing number at most
k′ = n(n − 1)ww′ + kw′ + m2, allowing rotation flips. The heavy-weight cycle on
{u1, . . . , u4n} is drawn without crossings, and the rest of H is connected (since G is



Fig. 1 The graph H

connected) so it is drawn entirely on one side of that cycle; we may assume without
loss of generality that it is on the interior of the cycle. Note that k′ < n2ww′ +m2w′ +
m2, and by choice of w and w′ this is at most 35m8 + 5m4 + m2 < w2. Hence, in
our drawing no two edges of weight w cross each other, and therefore the paths Pi

(1 ≤ i ≤ 2n) are drawn as shown in Fig. 1.
Next, consider the modified paths Qi . Qi must cross each of the paths Pi+1

through P2n−i , contributing (2n − 2i)ww′ to the crossing number. Summing these
values for i = 1, . . . , n, we observe a contribution of at least n(n − 1)ww′ from
crossings between the Qi and the Pj to the crossing number. This leaves k′ −
n(n − 1)ww′ = kw′ + m2 possible crossings. Since kw′ + m2 ≤ m2w′ + m2 =
(w′/5)(w′ + 1) < (w′/2)2, there cannot be any further crossings among edges from
any of the paths Qi and Pj (all of these edges have weight w, w′ or w′/2, and
w > w′ > w′/2; so any crossing would contribute at least (w′/2)2 to the crossing
number). From this it follows that the rotation at each bi is not flipped.

Finally, we want to argue that every bi lies between Pn and Pn+1. We already know
this for bn. Consider any bi . As G is connected by assumption, there is a path from
bn to bi using edges encoding G. If this path crosses Pn or Pn+1, it contributes w or
more to the crossing number. However, since kw′ +m2 < m2w′ +m2 = 5m4 +m2 <

7m4 = w, this is not possible. Therefore, every bi is also located between Pn and
Pn+1.

In summary, the drawing of H looks as shown in Fig. 1. This drawing clearly
indicates a linear arrangement φ of G. An edge e = uv contributes at least |φ(u) −
φ(v)|w′ to the crossing number of H , so

∑
uv∈E |φ(u)−φ(v)|w′ ≤ kw′ +m2. Since

m2 < w′, the value of the linear arrangement is at most k.
We still need to convert H to an unweighted graph. To this end, we replace each

edge e of weight x by x parallel edges, and then subdivide each of these edges; the
effect is that e is replaced by a copy of K2,x with the endpoints of e identified with
the partite set of size 2. The new edges are inserted in the rotation at where e was,



Fig. 2 Replacing an edge by
parallel paths

ordered as indicated in Fig. 2. Thus we obtain an unweighted graph H ′ from H .
Since all weights are polynomially bounded in the size of G, the unweighted graph
is of size at most polynomial in the size of G.

Recall that the existence of a linear arrangement of G of value at most k is equiv-
alent to both crrot(H) ≤ k′ and crflip(H) ≤ k′. Suppose that crrot(H) ≤ k′. Since H ′
can be drawn like H , we have crrot(H

′) ≤ crrot(H). Also crflip(H
′) ≤ crrot(H

′), so
we have crrot(H

′) ≤ k′ and crflip(H
′) ≤ k′.

To finish, since crrot(H
′) ≤ k′ implies that crflip(H

′) ≤ k′, it suffices to show that
crflip(H

′) ≤ k′ implies that crflip(H) ≤ k′. Consider a drawing of H ′ that allows the
rotation at each vertex to flip, and which has crossing number at most k′. This drawing
naturally induces a rotation system of H (which corresponds to the given rotation
system, except that the rotation of some vertices might have been flipped). Each edge
e = uv of weight x in H now corresponds to a collection Pe of x paths of length
2 in H ′. For every edge e pick one path Pe ∈ Pe that has the smallest number of
total crossings with paths in

⋃
f �=e Pf . Then replace Pe by an edge following Pe of

weight x. The resulting drawing has weighted crossing number at most the crossing
number of the drawing of H ′ we started with, that is, k′. �

In Sect. 4 we show that Theorem 2.1 remains true for other notions of crossing
numbers.

3 Cubic Graphs

Theorem 2.1 can be used to prove that computing the crossing number of a cubic
graph is NP-complete. This was a long-standing open question that was solved only
recently by Petr Hliněný.

Theorem 3.1 (Hliněný [7]) Computing the crossing number of a 3-connected, cubic
graph is NP-complete.

Proof Consider a graph G with rotation system. We will construct a 3-connected,
cubic graph G′ such that crflip(G) ≤ k if and only if cr(G′) ≤ k. This suffices, since
by Theorem 2.1 deciding crflip(G) ≤ k is NP-complete.

We can assume that G has no vertices of degree 1 (by removing them) or 2 (by
contracting an incident edge); G could become a multigraph, but the crossing number
remains unchanged. Replace each vertex v by a hexagonal grid, made up of 4k + 4
rows of d = deg(v) hexagons per row. (The idea of using hexagonal grids is present



Fig. 3 Hexagonal grid replacing vertex

in Hliněný’s original proof.) Let the vertices along the top be labeled v1, . . . , v2d+1,
as shown in Fig. 3.

Let us say the rotation at v lists edges in order e1, . . . , ed (cyclic order, so the first
element is chosen arbitrarily). We make each ei incident to v2i . Repeating this for
every vertex, we obtain a simple graph of maximum degree 3; the hexagonal grids
still contain vertices of degree 2; we can remove these by edge contractions to obtain
a simple, cubic graph G′. Let Hv be the subgraph of G′ resulting from the hexagonal
grid that replaced v by removing degree 2 vertices through edge contraction. Note
that each edge of Hv belongs to a single row or two consecutive rows of (partially
contracted) hexagons.

Any drawing of G with crossing number at most k yields a drawing of G′ with
at most k crossings. For the reverse direction, suppose that we have a drawing of G′
with at most k crossings. Let X be the set of edges of Hv involved in crossings. Since
|X| ≤ 2k there must be two consecutive rows in Hv that do not contain an edge of X;
let Rv be the subgraph formed by these rows. Rv is a subdivision of a 3-connected
graph, so Rv has a unique embedding on the sphere up to flipping the rotation. Hence,
without loss of generality, Rv is drawn so that each of its hexagons, some of which
are partially contracted, bounds an empty face.

We can easily find disjoint paths Pi from v2i to Rv for 1 ≤ i ≤ d within Hv . Let
H ′

v be the union of Rv and all Pi . Consider the restriction of the drawing of G′ to the
drawings of the H ′

v (for all v ∈ V ) and all edges between distinct Hv (the edges in E).
At each Hv , consider the edges ei extended through the paths Pi until they reach Rv .
Since Rv is not involved in any crossings, the paths attach at Rv in their original order
P1,P2, . . . ,Pd . Hence, if we contract Rv to a single point, the paths will attach in the
order corresponding to the rotation at v or its flipped rotation. Contracting every Rv

to a single point, we obtain a subdivision of G with the given rotation or flipped
rotation at each vertex of G. Removing the subdivisions yields the desired drawing
of G. Since none of the operations (restriction, contraction of crossing-free edges,
removing subdivisions) increase the crossing number we have obtained a drawing of
G with crossing number at most k. Thus, computing the crossing number of a simple,
cubic graph is NP-complete.

Finally, observe that the graph G′ we constructed is 3-connected: suppose that
there were two vertices disconnecting G′; if both vertices belong to the same Hv ,
then they have to be among the labeled vertices; however, since we assumed that



Fig. 4 Rotation gadget

G has minimum degree at least 3, this is not possible. Hence the two vertices must
belong to two different Hv and must be among the labeled vertices that are connected
to other grids; however, each grid is attached to at least three other grids (since the
original graph G has minimum degree 3), so removing two vertices from G′ cannot
disconnect it. �

Remark 3.2 Theorem 3.1 remains true if the graph is given with rotation system.
Indeed, the proof becomes easier since we no longer have to be concerned about the
hex-grids flipping. Also note that for cubic graphs allowing vertex rotations to flip
is equivalent to not specifying a rotation system since there are only two rotations at
each vertex of degree 3.

As Hliněný observes, Theorem 3.1 implies that computing the minor-monotone
crossing number is NP-complete [7]. Another result, which follows immediately (as
observed in [3]) is that it is NP-hard to find a drawing of a directed graph in which
all incoming (and therefore all outgoing) edges at a vertex are consecutive and which
minimizes the crossing number.

Finally, our Theorem 2.1 is in turn derivable from Hliněný’s result, as the gadget
in Fig. 4 shows. If we take a cubic graph and replace each vertex by the gadget, we
obtain a graph with a fixed rotation system, whose crossing number differs from the
crossing number of the original graph by an additive term.

4 Other Crossing Numbers

There are many different ways to define a notion of crossing number and the current
definition has not always been the standard one; even recently Tao and Vu in their
book on additive combinatorics define crossing number to be what we would call pair
crossing number, and state and use the crossing lemma for it [23]. For the historical
development of the notion of crossing number and its variants, see the papers by Pach
and Tóth [14] and Székely [21]. Here, we concentrate on four of the main variants:
the rectilinear crossing number, the odd crossing number, the pair crossing number
and the independent odd crossing number.



Fig. 5 Gadget to attach to
degree 2 vertices

The rectilinear crossing number of G, rcr(G), is the minimum number of cross-
ings in a straight-line drawing of G that is, a drawing in which edges are realized as
straight-line segments.

A graph G has crossing number at most
(
m
2

)
. If we replace each crossing with a

temporary vertex, the resulting graph is planar and thus has a straight-line drawing
with the same rotation system by the proof of Fáry’s theorem [13]; by doubling each
temporary vertex (one copy corresponding to each edge of G crossing at the tem-
porary vertex) and perturbing the temporary vertices slightly, we obtain a drawing
of a subdivision of G with the same crossing number as the original drawing and in
which every edge of G corresponds to a polyline with at most

(
m
2

) + 1 line segments.
Therefore, if G′ is obtained from G by subdividing each edge of G with

(
m
2

)
vertices,

then rcr(G′) = cr(G) and rcrrot(G
′) = crrot(G). If we start with G cubic, then G′ has

vertices of degree 3 and 2, but we can easily make G′ cubic, by attaching the gadget
in Fig. 5 to each vertex of degree 2.

Hence, by Theorem 3.1 and Remark 3.2, we obtain the next result.

Theorem 4.1 Computing the rectilinear crossing number of a cubic graph with or
without a given rotation system is NP-hard.

It is not clear whether we can maintain 3-connectivity (our proof certainly does
not do so). It is not known whether rcr, with or without rotation, lies in NP.

The pair crossing number of a drawing is the number of pairs of edges that cross,
counting each pair only once. The odd crossing number of a drawing is the number
of pairs of edges that cross an odd number of times. The independent odd crossing
number of a drawing is the number of pairs of non-adjacent edges that cross an odd
number of times. Taking the minimum of each parameter over all drawings of a graph
G gives the pair crossing number, pcr(G), the odd crossing number, ocr(G) and the
independent odd crossing number, iocr(G). All of these crossing numbers can be
extended to weighted graphs, graphs with rotation and flipped rotations analogously
to crossing number.

Computing ocr and pcr without rotation system is NP-complete and the prob-
lems remain in NP if we add rotation systems [14, 20]. In fact, the problems remain
NP-hard as well:

Theorem 4.2 Computing odd or pair crossing number of a cubic, 3-connected graph
with or without a given rotation system is NP-complete.



While the proof of this result is based on the same basic construction as Theo-
rem 2.1, the verification that the construction works becomes much more complex
and needs new ideas. For this reason we leave the proof to Sect. 6.1

As a bonus, Theorem 4.2 allows us to settle the complexity of the independent
odd crossing number problem simply because iocr(G) = ocr(G) for cubic graphs,
since any three edges incident to the same vertex can be redrawn so they cross each
other evenly by modifying the rotation at the vertex. Since independent odd crossing
number lies in NP [14], we obtain the following result.

Corollary 4.3 Computing the independent odd crossing number of a graph is
NP-complete.

5 Parameterization

One way to parameterize the crossing number problem is by the number of vertices of
the graph; that is, we think of the number of vertices as small and fixed but allow an
arbitrary number of (multiple) edges and loops. Without rotation system, this problem
is equivalent to computing the crossing number of a weighted graph without multiple
edges or loops: Given a graph G = (V ,E) with multiple edges and loops, note that
in a crossing-number optimal drawing any two edges with the same endpoints can be
routed in parallel. If we let G′ be the complete graph on V with edge weights w(uv)

equal to the number of edges in E between u and v, then the weighted crossing
number of G′ equals cr(G). Note that the weights of G′ can be stored using at most
logm bits, where m = |E|.

Moreover, that weighted crossing number of G′ can be computed exactly. For each
edge there are

∑
k<(n

2)
k! ≤ (

n
2

)! orderings in which other edges can cross it (where
n = |V |), since any two edges cross at most once. Replacing each crossing with a
vertex yields a planar graph with at most O(n4) vertices, so we can exhaustively try
all crossing patterns and test them for planarity in time O

((
n
2

)!(n
2)n4

)
. For each planar

drawing, we can calculate its crossing number in time O(n4 log2 m) by scanning each
pair of crossing edges and adding the product of their weights to the crossing number.
The minimum of these numbers is the weighted crossing number of G′, which we had
to compute. The overall running time is O(2n3 lognn4 log2 m).

The problem becomes more interesting if the graph G is given with a rotation
system. For example, the separation of pcr and ocr was first demonstrated via a two-
vertex multigraph with rotation system [18]. In the following sections we discuss the
cases of one and two vertices connecting them with well-known problems such as
determining the number of inversions in a permutation and finding the edit distance
of two cyclic words. We also include a weak approximation result for the general
case.

1The claim about pair crossing number could be established directly by modifying the proof of Theo-
rem 2.1. Odd crossing number, however, seems to require additional work.



5.1 One Vertex

Given a graph with a rotation system on a single vertex (with loops), it is quite
straightforward to compute its crossing number in quadratic time.

In contrast, a linear time algorithm for the one-vertex case would come as a sur-
prise, since the problem contains as a special case a well-studied problem: computing
the number of inversions of a permutation. Given a permutation π over {1, . . . ,m}, an
inversion of π is a pair (i, j) such that i < j and π(i) > π(j). It is well-known that
the number of inversions of a permutation π equals ds(123 · · ·m,π(1)π(2) · · ·π(m)),
where ds(u, v) is the number of transpositions of adjacent letters required to get from
word u to word v (see, for example [9, Sect. 5.1.1]). The best-known algorithms for
either problem run in �(m logm).2

The inversion problem is easily encoded as a crossing number problem on a single
vertex: simply let the rotation at the vertex be 12 · · ·mπ(m)π(m − 1) · · ·π(2)π(1);
this suggests that an algorithm for the single-vertex case that runs better than
O(m logm) will be hard to come by.

We can, however, compute the crossing number of a one-vertex multigraph in time
�(m logm), extending the algorithm used to compute the number of inversions of a
permutation.

Theorem 5.1 The crossing number of a one-vertex multigraph with rotation system
can be computed in time O(m logm).

Proof Let π be the rotation of the one-vertex multigraph G. If the graph has m edges,
then π has length 2m, containing each number in 1,2, . . . ,m exactly twice. Split π

into two halves: π = π0π1. If both occurrences of i ∈ {1, . . . ,m} are in π0 we say i

is of type 0. If both occurrences of i are in π1 we say i is of type 1. Otherwise i is
of type 2. An edge of type 0 does not cross an edge of type 1 in a minimal draw-
ing. Let crrot(G, i, j) be the number of crossings between edges of type i and type
j . Then crrot(G) = crrot(G,0,0) + crrot(G,1,1) + crrot(G,2,2) + crrot(G,0,2) +
crrot(G,1,2).

We compute crrot(G,0,0) and crrot(G,1,1) recursively. The value of crrot(G,0,2)

and, similarly, crrot(G,1,2) can be computed directly in linear time as follows:
Process π0 from left to right. Keep a counter that counts how many type 2 edges have
been seen so far; initially, the counter is zero. During the loop, when we encounter a
type 0 edge we store the current value of the counter at that position. At the end of
the loop, we sum for each type 0 edge the difference between the two values stored
at the positions where the edge begins and ends. That sum is crrot(G,0,2). Finally,
consider crrot(G,2,2). All edges of type 2 begin in π0 and end in π1. Two type 2
edges cross if the order of their endpoints in π0 and in π1 is the same. Hence, we can
compute crrot(G,2,2) by counting inversions, which can be done in time O(m logm)

as we mentioned earlier.

2See [9, Exercises 5.1.1-6 and 5.2.4.-21]. Wagner’s linear time algorithm [25] for computing ds(u, v) is
wrong.



Combining these observations, we obtain the recurrence

T (m) = 2T (m/2) + O(m logm)

for the running time of the algorithm, which has the solution T (m) = O(m log2 m).
However, we can improve the analysis: since an edge cannot have more than one type
in each step of the recursion, we really have

T (m) = T (m0) + T (m1) + O(m2 logm2) + O(m),

where mi is the number of edges of type i, and m0 +m1 +m2 = m. It is easy to show
that T (m) = O(m logm). �

5.2 Two Vertices

In this section we consider graphs on two vertices, allowing multiple edges, but no
loops. The crossing number of a loopless two-vertex multigraph can be expressed as
the solution of an integer linear program whose relaxation can be used to compute
the optimal integer solution in polynomial time [18].

Here we want to give a fast and simple 2-approximation algorithm for the two-
vertex case. To do so, we look at the crossing number problem as an edit-distance
problem on words. The edit distance between two words is the smallest number of
operations transforming one word into the other. There are numerous variants of this
problem depending on which operations are allowed and what the associated costs
are [10, 25]. There are also several papers studying objects other than words, such
as trees and cyclic words (also known as necklaces) [8, 11, 12], but it seems the
particular variant we find needful here—allowing only swaps (at unit cost) on cyclic
words—has not been considered at all so far. A swap is the transposition of two
adjacent letters in a word. A cyclic word is the equivalence class of a word under
cyclic shifts. The last and first letter of a cyclic word are considered adjacent. Let
ds(u, v) be the smallest number of swaps transforming u into v, where u and v are
ordinary words. Similarly, let d◦

s (u, v) be the smallest number of swaps transforming
u into v allowing cyclic shifts at no cost. Then d◦

s (u, v) is the swapping distance of
the two cyclic words represented by the words u and v. E.g. d◦

s (abcd, cdba) = 1,
while ds(abcd, cdba) = 5.

Computing ds is easy (see [25]). Our goal is the computation of d◦
s (u, v).

Swapping distance of Cyclic Words
Instance: Two words u, v, integer k.
Question: Is d◦

s (u, v) ≤ k?

We do not know how hard this problem is in general; however, with the restriction
that the words contain each letter exactly once, we can solve the problem. Indeed, in
that case it is equivalent to computing the crossing number of a loopless two-vertex
multigraph G with rotation system.

This is easily seen: let the two (cyclic) words u and v represent the rotations of the
two vertices p and q of G reading the edges clockwise. Draw p with edges leaving



Fig. 6 Removing a minimal
bigon and a crossing; changing
the rotation

p in the order determined by u. Let vR denote the reverse of v. For every swap in
the sequence of d◦

s (u, vR) swaps we extend all edges and cross the two edges corre-
sponding to the letters swapped. We obtain a set of curves ordered according to vR

which can then be connected without further crossings to a vertex q with rotation v.
Suppose, on the other hand, that we are given a graph G with two vertices p and q

that have clockwise rotations u and v. Fix a drawing of G that respects the rotations
and minimizes the crossing number. In this drawing no two edges can cross more
than once, by a standard argument [21]: if they did, we could consider the segments
of the edges between the crossings, and avoid one or two crossings by redrawing the
segments alongside each other, following the segment with fewer crossings, reducing
the total number of crossings; the redrawing move might introduce self-intersections
of an edge, but those can be removed easily.

For each crossing, the arcs from p to the crossing form a closed Jordan curve; let
the region bounded by this curve that does not contain q be called a p-bigon. For any
p-bigon B , if an edge crosses its boundary exactly once, then the arc from p to that
crossing must lie within B , forming a p-bigon contained within B; note that such an
edge enters the rotation at p from the interior of B . Now let B be a minimal bigon
(with respect to containment). Any edge that crosses B must cross each of the two
arcs bounding B exactly once (it cannot cross either arc more than once since two
edges cross at most once, and if it only crossed the boundary of B once then B would
not be minimal). We redraw one of these arcs alongside the other, removing the p-
bigon and lowering the number of crossings by one (see Fig. 6). The change in the
rotation at p translates into a swap of letters in u corresponding to the two curves that
form the bigon. Repeating this argument, we can inductively prove that the crossing
number of G equals the swapping distance of u and vR .

Proposition 5.2 For a loopless two-vertex multigraph G with rotations u and vR ,
crrot(G) = d◦(u, v).

We rephrase the restricted swapping-distance problem as follows: we can assume
that u = σ(1)σ (2) · · ·σ(m) and vR = 12 · · ·m for some permutation σ of the ele-
ments of the cyclic group Zm. Define cr(σ ) := d◦(u, v). Thinking of u as a word, we
can say σ(i) is in position i.

For each i ∈ Zm, let swapi be the permutation that switches i and i + 1 mod m

and fixes all other elements of Zm; then for any permutation τ of Zm, τ ◦ swapi has
the positions of τ(i) and τ(i + 1) switched. For each i ∈ Zm, let shifti denote the
permutation of Zm such that shifti (j) = j − i mod m for all j ∈ Zm; then τ ◦ shifti
has each τ(j) moved i positions up. By definition, cr(σ ) is the minimum number of
swaps in a sequence of swaps and shifts τ0, τ1, . . . , τk such that σ ◦ τ0 ◦ τ1 ◦ · · · ◦ τk is



the identity permutation. Since swapi ◦ shiftj = shiftj ◦ swapi+j mod m for any i, j ∈
Zm, we can assume that τ0 is the only shift and τ1, . . . , τk are swaps.

We define a new function c̃r on permutations that will be seen to be related to cr.
For a permutation τ of Zm and for each i ∈ Zm, let d+

i (τ ) = τ(i) − i mod m and
d−
i (τ ) = i − τ(i) mod m, and let di(τ ) = min{d+

i (τ ), d−
i (τ )}. The latter measures

the minimum number of swaps needed to move τ(i) to position τ(i). Next define
d(τ) = ∑

i∈Zm
di(τ ) and

c̃r(τ ) = min{d(τ ◦ shiftj ) : j ∈ Zm}.
We claim that c̃r approximates cyclic swapping distance to within a factor of 2.

Theorem 5.3 For any permutation σ , cr(σ ) ≤ c̃r(σ ) ≤ 2 cr(σ ).

By Proposition 5.2, it immediately follows that for any two-vertex loopless multi-
graph G represented by a permutation σ , crrot(G) ≤ c̃r(σ ) ≤ 2 crrot(G).

Proof We first show that c̃r(σ ) ≤ 2 cr(σ ). For any permutation τ of Zm and any
j ∈ Zm, |di(τ )−di(τ ◦ swapj )| is 0 unless i ∈ {j, j +1 mod m}, in which case it is 0
or 1. Therefore |d(τ) − d(τ ◦ swapj )| ≤ 2 for all j ; if cr(G) = k, then there is a shift
τ0 and k swaps τ1, . . . , τk so that σ ◦ τ0 ◦ τ1 ◦ · · · ◦ τk is the identity, so d(σ ◦ τ0 ◦ τ1 ◦
· · · ◦ τk) = 0, and, therefore, d(σ ◦ τ0) ≤ 2k. On the other hand, d(σ ◦ τ0) ≥ c̃r(G) by
definition, and we obtain c̃r(G) ≤ 2 cr(G).

It remains to show that cr(σ ) ≤ c̃r(σ ). For this, it suffices to prove that cr(σ ) ≤
d(σ ), since this implies cr(σ ◦ shiftj ) ≤ c̃r(σ ) for some j , and cr(σ ◦ shiftj ) = cr(σ )

(for any j ).
Zm is partitioned into cycles by σ . If all of them are trivial then σ = id and

cr(σ ) = 0 = d(σ ), but otherwise we may let S ⊆ Zm be the set of elements of a
nontrivial cycle ψ in σ . (Then ψ = σ |S , and for all i, j ∈ S there is some k such that
σk(i) = j .)

First we consider the case that there exist i, j ∈ S with di(σ ) = d−
i (σ ) and

dj (σ ) = d+
j (σ ). Then there must exist some such i, j with j = σ(i). We may as-

sume that di(σ ) ≤ dj (σ ); the other case is similar. We first apply d−
i (σ ) swaps

to move σ(i) = j from position i down to position j , which also moves each
σ(j), σ (j + 1), . . . , σ (i − 1) one position up. Then we can apply d−

i (σ ) − 1
swaps to move σ(j) upward from position j + 1 to position i, which moves each
σ(j + 1), σ (j + 2), . . . , σ (i − 1) back down one step to their original positions. Thus
we have switched the positions of j and σ(j) while fixing all other elements, us-
ing 2di(σ ) − 1 swaps. For the new permutation σ ′ we have dj (σ

′) = 0, di(σ
′) =

dj (σ ) − di(σ ), and dk(σ
′) = dk(σ ) for all k �∈ {i, j}, so d(σ ′) = d(σ ) − 2di(σ ). By

induction there is a way to make σ ′ become the identity permutation using shifts and
at most d(σ ′) swaps, altogether giving us a way to change σ to the identity using at
most d(σ ′) + 2di(σ ) − 1 swaps. That is no more than d(σ ), completing this case.

In the remaining case, we may assume without loss of generality that di(σ ) =
d+
i (σ ) for all i ∈ S. For each i ∈ S, let f (i) ∈ S\{i} be (uniquely) defined such that

only the first and last elements in positions i, i + 1, . . . , f (i) are in S. For every



i ∈ S, perform f (i) − i − 1 swaps that move σ(i) upward from position i to position
f (i) − 1; this also moves each i ∈ Zm\S one position back. Then apply shift1. We
get a permutation σ ′ with σ(i) in position f (i) for each i ∈ S, and σ(i) = σ ′(i) for
each i ∈ Zm\S. Then d(σ ) − d(σ ′) = ∑

i∈S(f (i) − i mod m). Since the number of
swaps used is

∑
i∈S(f (i) − i − 1 mod m) which is no more than d(σ ) − d(σ ′), we

finish by applying induction to σ ′. �

Remark 5.4 The bounds of Theorem 5.3 are asymptotically optimal: for σ :=
(1 2)(3 4) · · · (2m − 1 2m) we have c̃r(σ ) = 2m and cr(σ ) = m; for the lower bound
consider τ := (1 m) (as a permutation of numbers 1, . . . ,2m), then c̃r(τ ) = 2m − 2
and cr(τ ) = 2m − 3.

Remark 5.5 We have seen that the crossing number of a loopless two-vertex multi-
graph equals the swapping distance of two cyclic words. If instead of cyclic words
we restrict the problem to ordinary words, the swapping distance equals the crossing
number of a two-vertex multigraph which has both of its vertices on the boundary
of a disk and all edges within the disk. We can view this as a special case of the
crossing number of a two-vertex multigraph, by replacing the boundary of the disk
by many parallel edges. The fact that c̃r(G) approximates cr(G) in this case is known
as Spearman’s Footrule and was first proved by Diaconis and Graham [4].

Theorem 5.3 gives us a fast and easy way to approximate crrot(G) for a two-
vertex multigraph. Computing c̃r(σ ) from the definition can be done in quadratic
time; using dynamic programming the problem can be solved in linear time: to sim-
plify the following sketch, we assume that |σ | is odd, and let dmax = 
|σ |/2�. For all
0 ≤ d ≤ dmax and 0 ≤ j < |σ | let

nd
j := |{i : d+

i (σ ◦ shiftj ) = di(σ ◦ shiftj ) = d}|, and

n−d
j := |{i : d−

i (σ ◦ shiftj ) = di(σ ◦ shiftj ) = d}|.

Note that d(σ ◦ shiftj+1) = d(σ ◦ shiftj ) − ∑dmax
d=1 nd

j + ∑dmax −1
d=0 n−d

j . Also, nd
j+1 =

nd+1
j for −dmax ≤ d < dmax, and n

dmax
j+1 = n

−dmax
j . Let

Xj = −
dmax∑

d=1

nd
j +

dmax −1∑

d=0

n−d
j .

Then Xj+1 −Xj = −n
dmax
j+1 +2n1

j −n
−dmax +1
j , and the values n

dmax
j , n1

j , n
−dmax +1
j can

be located within 〈nd
0〉d=dmax

d=−dmax
in constant time. Thus, our algorithm is as follows:

Compute 〈nd
0〉d=dmax

d=−dmax
, then X0, then X1, . . . ,X|σ |−1, then 〈d(σ ◦ shiftj )〉|σ |−1

j=0 , and
finally take the maximum of the previous sequence. Each step takes linear time, and
the last step gives us c̃r(σ ).

Corollary 5.6 The crossing number of a loopless two-vertex multigraph with rotation
system can be approximated to within a factor of 2 in linear time.



5.3 Several Vertices

There is little we can say at this point about how hard it is to compute the crossing
number of a graph with a rotation system on a fixed number k of vertices when
k ≥ 3. Using results from a previous paper [18], however, we can give at least an
approximation result. In this section we allow both loops and multiple edges.

Theorem 5.7 The crossing number of a multigraph G = (V ,E) with rotation system
can be approximated to within a factor of

(
k+4

4

)
/5 in time O(mk logm), where k =

|V | and m = |E|.

In [18] we showed that cr(G) ≤ ocr(G)
(
k+4

4

)
/5 (see Sect. 4 for the definition

of ocr). In fact, the proof applies to a multigraph G with rotation system, yielding
crrot(G) ≤ ocrrot(G)

(
k+4

4

)
/5. The proof works by choosing a particular sequence of

k − 1 edges e1, . . . , ek−1 and contracting G along those edges obtaining a one-vertex
multigraph G′ with rotation system. For graphs on a single vertex, crossing num-
ber and odd crossing number are the same; hence, crrot(G

′) = ocrrot(G
′). Further-

more, the sequence of edges is chosen such that crrot(G
′) ≤ ocrrot(G)

(
k+4

4

)
/5. The

redrawing procedure of the proof establishes that ocrrot(G) ≤ ocrrot(G
′). Introducing

c := ocrrot(G
′) allows us to summarize the discussion as

c
/((

k + 4

4

)
/5

)
≤ ocrrot(G) ≤ c.

Since ocrrot(G) ≤ crrot(G) ≤ ocrrot(G)
(
k+4

4

)
/5, we conclude that

c
/((

k + 4

4

)
/5

)
≤ crrot(G) ≤ c

(
k + 4

4

)/
5.

Now c can be computed in time O(m logm) using the algorithm from Theorem 5.1
for one-vertex multigraphs with rotation system. The only remaining problem is that
we do not know the sequence of edges that determines G′ and π ′. Thus we try all
possible sequences, giving a running time of O(mk logm).

6 Odd and Pair Crossing Numbers

The obvious strategy for proving Theorem 4.2 is to adapt the corresponding proof
for cr to ocr using redrawing tools, showing that cr and ocr agree for the graphs
used in the constructions or are close enough for the proof to go through.3 We could
not make this approach work and decided to replace MINIMUM LINEAR ARRANGE-
MENT with a different problem based on tournaments instead of linear orders. We
introduce this new problem, MINIMUM TOURNAMENT ARRANGEMENT, and show

3Indeed, in an earlier version of the paper we claimed that Theorem 4.2 was an easy consequence of the
construction for the standard crossing number [16]. We no longer believe this to be true.



it to be NP-hard in Sect. 6.1. With this we complete the proof of Theorem 4.2 in
Sect. 6.2. MINIMUM TOURNAMENT ARRANGEMENT also leads to some combina-
torial questions that are interesting in their own right.

6.1 A Tournament Problem

Our attempts to reduce MINIMUM LINEAR ARRANGEMENT to the odd crossing
number problem with rotation ran into problems, since we were not able to show
that an optimal drawing represents a linear arrangement. What happens if we replace
the linear arrangement with the next best thing: a tournament?

A tournament T = (V ,F ) is a directed graph such that for each pair of distinct
vertices u,v ∈ V exactly one of uv, vu is in F . Let twoT (u, v,w) be the indicator
for the existence of an oriented path of length 2 between u and v, passing trough w,
formally

twoT (u, v,w) =
{

1 if {uw,wv} ⊆ F or {vw,wu} ⊆ F ,

0 otherwise.
(1)

Let twoT (u, v) be the number of w ∈ V for which twoT (u, v,w) = 1. We consider
the following problem:

MINIMUM TOURNAMENT ARRANGEMENT

Given: A simple undirected graph G = (V ,E), number k.
Question: Does there exist a tournament T = (V ,F ) such that

|E| +
∑

uv∈E

twoT (u, v) ≤ k? (2)

If G has a linear arrangement φ of value k then it has a tournament arrangement
of value k, since one can take the linear order T = (V ,F ) induced by φ: uv ∈ F ⇔
φ(u) < φ(v). The value of twoT (u, v) in this tournament is |φ(u) − φ(v)| − 1, so
|E| + ∑

uv∈E twoT (u, v) = ∑
uv∈E |φ(u) − φ(v)|.

We believe that the optimum of MINIMUM TOURNAMENT ARRANGEMENT is
always attained on a tournament which is a linear order:

Conjecture 6.1 For every graph G and every integer k the answers to MINIMUM

LINEAR ARRANGEMENT for (G, k) and MINIMUM TOURNAMENT ARRANGE-
MENT for (G, k) are the same.

We can prove Conjecture 6.1 for the complete graph. The value of the minimum
linear arrangement of Kn is

(
n+1

3

)
, see, e.g., [5].

Lemma 6.2 The minimum tournament arrangement of Kn has value
(
n+1

3

)
.

Proof We can count the number of paths of length 2 in T as follows:

A :=
∑

{u,v}∈(V
2)

twoT (u, v) =
∑

w∈V

d+(w)d−(w), (3)



where d+(w) is the out-degree of w in T and d−(w) is the in-degree of w in T . Let
i(w) = d+(w) − d−(w) be the imbalance of w. Then

B :=
∑

w∈V

i(w)2 =
(∑

w

d+(w)2
)

+
(∑

w

d−(w)2
)

− 2A. (4)

We have

n(n − 1)2 =
∑

w∈V

(d+(w) + d−(w))2 =
(∑

w

d+(w)2
)

+
(∑

w

d−(w)2
)

+ 2A. (5)

From (4) and (5) we obtain 4A = n(n − 1)2 − B . Thus the problem of minimizing A

is equivalent to maximizing B .
Assume that T maximizes B . Suppose that i(u) = i(v) for two distinct vertices

u,v ∈ V . If we switch the orientation of uv ∈ T then the contribution of u and v to B

changes by (x +2)2 + (x −2)2 −2x2 = 8 where x = i(u). Thus for T that maximizes
B all the imbalances are different.

Now we claim that for u,v with i(u) < i(v) the edge uv must be in T . Assume
not. Then by reversing vu to uv the contribution of u and v changes by

(i(v) + 2)2 + (i(u) − 2)2 − i(v)2 − i(u)2 = 8 + 4(i(v) − i(u)) > 0.

Thus the optimal tournament is a linear order, for which the value agrees with the
value of the linear arrangement with the corresponding φ. �

We were unable to settle Conjecture 6.1 but we will show the following result,
which is sufficient for our purposes.

Theorem 6.3 MINIMUM TOURNAMENT ARRANGEMENT is NP-complete.

Proof MINIMUM TOURNAMENT ARRANGEMENT is clearly in NP. For NP-hard-
ness we will follow the NP-hardness proof of MINIMUM LINEAR ARRANGEMENT

from [5, Theorem 1.5]. The reduction is from MAX-CUT.
Given an instance G′ = (V ′,E′), k′ of MAX-CUT, we construct an instance of

MINIMUM TOURNAMENT ARRANGEMENT as follows. Let n = |V ′|, r = n4, and let
U be a set of r vertices, U ∩ V ′ = ∅. Let V = V ′ ∪ U and G = (V ,E), where E is

defined by: uv ∈ E ⇔ uv �∈ E′. Finally, let k = (
n4+n+1

3

) − k′n4. We will show that
(G′, k′) is a positive instance of MAX-CUT if and only if (G, k) is a positive instance
of MINIMUM TOURNAMENT ARRANGEMENT.

First, suppose that (G′, k′) is a positive instance of MAX-CUT. In this case we
use the same argument as in [5]. Let S1, S2 be the max-cut of G′. Now consider the
tournament arrangement induced by the linear order φ, where φ maps the vertices
in S1 to {1, . . . , |S1|} and vertices in S2 to {n4 + n + 1 − |S2|, . . . , n4 + n}. A quick
calculation shows that the value of this tournament is at most k.



If, on the other hand, (G′, k′) is a negative instance of MAX-CUT, then every cut
in G′ has size less than k′. Let T be any tournament for G. We have

|E| +
∑

uv∈E

twoT (u, v) =
((

n4 + n

2

)
+

∑

{u,v}∈(V
2)

twoT (u, v)

)

− |E′| −
∑

uv∈E′
twoT (u, v). (6)

By Lemma 6.2, the first quantity on the right-hand side of (6) is at least
(
n4+n+1

3

)
.

Hence

|E| +
∑

uv∈E

twoT (u, v) ≥
(

n4 + n + 1

3

)
− |E′| −

∑

uv∈E′
twoT (u, v). (7)

Now |E′| ≤ n2 and

∑

uv∈E′
twoT (u, v) ≤ n3 +

∑

uv∈E′

∑

w∈U

twoT (u, v,w), (8)

where twoT (u, v,w) is defined in (1).
Consider the right-hand side of (8). Let w ∈ U be the vertex that contributes the

most to the sum. Let S1 ⊆ V ′ be the vertices which point to w in T and S2 = V ′ \ S1.
Then

∑

uv∈E′

∑

w∈U

twoT (u, v,w) ≤
∑

uv∈E′,u∈S1,v∈S2

n4 ≤ (k′ − 1)n4, (9)

since the max-cut in G′ has size at most k′ − 1.
Combining (7), (8), and (9) we obtain

|E| +
∑

uv∈E

twoT (u, v) ≥
(

n4 + n + 1

3

)
− n2 − n3 − (k′ − 1)n4

>

(
n4 + n + 1

3

)
− k′n4 = k,

where the last inequality is true for n ≥ 2. Hence (G, k) is a negative instance of
MINIMUM TOURNAMENT ARRANGEMENT. �

Conjecture 6.1 can be recast as a problem on matrices. Recall that a matrix
A is skew-symmetric if AT = −A; in particular, all diagonal elements of a skew-
symmetric matrix are zero.

Conjecture 6.4 Define the n × n skew-symmetric matrix A by Aij = −1 for i <

j and let B = AAT . Let C be the convex-hull of PBP T where P ranges over all
permutation matrices. If D is an n × n skew-symmetric matrix with entries from



[−1,1], then there exists an n×n matrix F with non-negative entries so that DDT +
F ∈ C .

Proposition 6.5 Conjecture 6.4 implies Conjecture 6.1; in the reverse direction, Con-
jecture 6.1 when extended to multigraphs implies Conjecture 6.4.

Proof sketch Let G = (V ,E) be a graph with V = {1, . . . , n}. Let H be the adjacency
matrix of G. Let T be a tournament and let D be the skew-symmetric matrix defined
by Dij = +1 if ij ∈ T and Dij = −1 if ji ∈ T for i < j . Note that (DDT )ii = n − 1
and for i �= j

(DDT )ij =
∑

k

DikDjk = (n − 2) − 2 twoT (i, j).

Finally, note that

〈DDT ,H 〉 = 2|E|(n − 2) − 4
∑

ij∈E

twoT (i, j). (10)

(The inner product of two matrices X,Y is 〈X,Y 〉 = tr(XYT ).)
Comparing (2) and (10) we see that Conjecture 6.1 is equivalent to: the maximum

of (10), over skew-symmetric matrices D with ±1 off-diagonal entries, is attained for
a matrix corresponding to a linear order.

First, suppose that Conjecture 6.4 is true and let D be the matrix maximizing (10).
There exists F with nonnegative entries such that DDT + F ∈ C . We have

max
X∈C

〈X,H 〉 ≥ 〈DDT + F,H 〉 ≥ 〈DDT ,H 〉,

and the maximum of the linear function X �→ 〈X,H 〉 on C is achieved on some
vertex PBP T = (PAP T )(PAP T )T . Hence we could have taken D = (PAP T ) and
obtained at least as good a value for (10).

Now assume that Conjecture 6.4 is false. Let D be a counterexample to Conjec-
ture 6.4. By linear programming duality (Farkas’ Lemma) there exists a non-negative
matrix Y such that

〈DDT ,Y 〉 > max
C∈C

〈C,Y 〉 = max
P∈Sn

〈(PAP T )(PAP T )T ,Y 〉.

The space of solutions is dense, so we can choose Y with all its entries rational. Mul-
tiplying Y by the common denominator does not affect the truth of the inequality,
so the entries of Y are non-negative integers. Since DDT is symmetric, we can re-
place Y by (Y + YT )/2 without changing the inner product, making Y symmetric.
Note that the diagonal entries of the matrices in C are n − 1, and the diagonal entries
of DDT are at most n − 1. Hence we can also assume that all diagonal entries of
Y are zero. In summary, Y corresponds to a loopless multigraph. So we have found
an example where the maximum of (10) with H replaced by Y is not achieved by a
skew-symmetric matrix corresponding to a linear order. Thus Y is a counterexample
to Conjecture 6.1 extended to multigraphs. �



6.2 Proof of Theorem 4.2

We make use of a redrawing tool that allows us to remove crossings with even edges.
An edge is called even if it is crossed by every other edge an even number of times
(including the possibility of no crossings).

Lemma 6.6 (Pelsmajer, Schaefer, Štefankovič [15]) If E0 is the set of even edges in
some drawing of a graph G in the plane, then G can be drawn so that no edge in E0
is involved in any crossings and there are no new pairs of edges that cross an odd
number of times. Moreover, the redrawing does not change the rotation system of G.

We begin with the analogue of Theorem 2.1 for ocr and pcr:

Lemma 6.7 Computing odd or pair crossing number of a graph with a given rotation
system is NP-complete. The problem remains NP-complete if the rotation at each
vertex is allowed to flip.

Before proving Lemma 6.7, we show how to use it to complete the proof of The-
orem 4.2.

Proof of Theorem 4.2 We first deal with ocr. Consider a graph G with rotation sys-
tem. We construct G′ from G as we did in the proof of Theorem 3.1. Any drawing of
G can be turned into a drawing of G′ in a natural way, which specifies a correspond-
ing rotation system for G′, such that there are corresponding pairs of oddly crossing
edges in G and in G′. Hence ocrflip(G) ≤ k implies ocrflip(G

′) ≤ k and ocrrot(G) ≤ k

implies ocrrot(G
′) ≤ k. Since G′ is cubic, ocrflip(G

′) = ocr(G′).
For the other direction, suppose we have a drawing of G′ with at most k pairs

of edges that cross oddly. As we did earlier, we argue that each Hv that replaces a
vertex v of G in G′ must contain two consecutive rows Rv that have no edges in
odd pairs. Lemma 6.6 allows us to redraw all the Rv so they are not involved in
any crossings—without changing the rotation system or increasing ocr. Note that if
any rotation in Rv is flipped then all of Rv is flipped. The rest of the argument now
proceeds as in the original proof: we can contract each Rv to a single vertex obtaining
a subdivision of the drawing of G. Removing the subdivisions does not increase ocr
and leads to a drawing of G with odd crossing number at most k. If we started with
a drawing realizing ocrflip(G

′) ≤ k, then this argument yields ocrflip(G) ≤ k. If the
initial drawing realized ocrrot(G

′) ≤ k, then ocrrot(G) ≤ k.
Therefore ocrflip(G) ≤ k ⇐⇒ ocrflip(G

′) ≤ k and ocrrot(G) ≤ k ⇐⇒
ocrrot(G

′) ≤ k, proving that ocrflip and ocrrot are NP-hard for 3-connected, cubic
graphs.

The proof for pcr is almost the same (except that it is easier to obtain the drawing
of G from the drawing of G′, since the assumption that there are at most k crossing
pairs of edges in the drawing of G′ directly implies that there are two rows Rv in each
Hv that are not involved in any crossings). �

We are left with the proof of Lemma 6.7.



For embedded closed curves in the plane, the Jordan Curve Theorem tells us that
the curve separates the plane into two regions. We can extend this notion to curves
with self-intersections. If C is a closed curve with self-intersections we can define a
notion of sides: two points not on C are on the same side of C if any curve connecting
them crosses C an even number of times.4 The notion of being on the same side of
C is well-defined, since any two curves connecting two points form a closed curve
and two closed curves on the plane cross an even number of times, so the two curves
connecting the points must have the same parity of crossing with C.

Now any curve between two points on opposite (not the same) sides of C must
cross C oddly. We will be considering curves in a drawing of a graph. Since the
drawing is planar it is contained within a disk and we can arbitrarily pick a reference
point outside that disk and call that point outside. This defines for every closed curve
in the graph a notion of inside and outside.

We use G, H and parameters k, w, w′ as defined in the proof of Theorem 2.1
except we now consider G as an instance of MINIMUM TOURNAMENT ARRANGE-
MENT rather than MINIMUM LINEAR ARRANGEMENT.

Note that the reduction from MAX-CUT to MINIMUM TOURNAMENT ARRANGE-
MENT in the proof of Theorem 6.3 yields a positive instance (G, k) which achieves its
required value in a linear ordering φ. The drawing of H in Fig. 1 has no edge pairs that
cross more than once, so given that linear ordering φ of G of value at most k, we ob-
tain a drawing of H with the given rotation system that satisfies ocr = pcr = cr ≤ k′.

We claim that: If ocrflip(H) ≤ k′, then G has a tournament arrangement of value
at most k. Since ocrflip ≤ pcrflip ≤ crflip, it immediately follows that if pcrflip(H) ≤ k′
or crflip(H) ≤ k′ (or, similarly, if ocrrot(H) ≤ k′, pcrrot(H) ≤ k′, or crrot(H) ≤ k′)
then G has a tournament arrangement of value at most k. Thus, proving the claim
establishes Lemma 6.7.

Let us assume then that ocrflip(H) ≤ k′. The edge weights along the cycle
(u1, . . . , u4n) were chosen large enough so that none of these edges can cross any
other edge oddly. Hence, all of the edges on this cycle are even, and we can apply
Lemma 6.6 to redraw G so that the cycle is embedded without changing the rotation
system or increasing ocr. Since G−{u1, . . . , u4n} is connected, the whole graph must
lie within the same face of the cycle, which we may assume to be the inner face. In
particular, we can assume that none of the rotations at vertices u1, . . . , u4n are flipped.

As in the proof of Theorem 2.1, we know that k′ < w2, so no two edges of weight
w can cross oddly, and, in particular, no two of the paths Pi cross each other oddly.
Consider paths Si := uiaibiciu2n+1−i , for 1 ≤ i ≤ n. Since the endpoints of Si and Pj

(and Si and P2n+1−j ) alternate along the outer cycle for 1 ≤ i < j ≤ n, such Si and Pj

(and Si and P2n+1−j ) have to cross oddly. Since we also know that no two edges of Pi

and Pj can cross oddly, the odd pair must have one edge each from Qi and Pj (Qi and
P2n+1−j ). Each such pair contributes ww′ to ocr. Since there are n(n− 1) such pairs,
the overall contribution to ocr is n(n− 1)ww′. Now k′ −n(n− 1)ww′ = kw′ +m2 <

(w′/2)2, so there cannot be any further odd pairs in Qi ∪ Pj since its edges have
weight at least w′/2. Moreover, k′ − n(n − 1)ww′ = kw′ + m2 < m2w′ + m2 =

4Two curves may not touch each other and they may not cross in a self-intersection point.



Fig. 7 An example with
1 � 2 � 3 � 1

5m4 + m2 < 7m4 = w, so none of the edges of weight w cross any other edge oddly
(such as the bibj edges) apart from the crossings between Pj and Qi we already
mentioned. Hence, the only remaining odd pairs contain an edge of type bibj , and
another such edge or an edge of weight w′ or w′/2.

Claim 6.8 For 1 ≤ i < j ≤ n, aibi crosses Pj oddly and bici crosses P2n+1−j oddly.
Other than this, edges of Qi cross edges of Pj ∪ P2n+1−j evenly.

Proof The second part of the claim follows from the first part since, as we argued
above, there are only two odd pairs with one edge in Qi and one in Pj ∪ P2n+1−j .
To confirm the first part of the claim, by symmetry we only need to show that aibi

crosses Pj oddly. Since the outer cycle is crossing-free, we can instead show that ai

and bi are on opposite sides of the closed curve Dj := uj · · ·u4n+1−j ajuj .
Note that u2n+1−j cj and cj bj cross Pj evenly. Let O be a crossing-free curve

from an outer reference point to u2n+1−j ; then Ou2n+1−j cj bj crosses Dj oddly.
Therefore bj is inside Dj .

Since bj is connected to bi via edges on the “b-vertices” that each cross Pj evenly,
bi is also inside Dj . On the other hand uiai is in Pi , so it crosses Pj evenly. Then, as
ui is outside of Dj , ai is also outside of Dj . Hence aibi must cross Pj oddly. �

We define a binary relation � on the set {1, . . . , n}. For 1 ≤ i < j ≤ n, let i � j

if Pi crosses ujaj oddly, and j � i if Pi crosses aju4n+1−j oddly. By Claim 6.8,
exactly one of these holds true, so � is a tournament arrangement of G. We will see
presently that the value of this arrangement is at most k.

Note that � is not necessarily a linear ordering. Figure. 7 shows that it is quite
possible to have a � b � c � a.

Let Ci be the closed curve ui · · ·u2n+1−icibiaiui , for 1 ≤ i ≤ n.

Claim 6.9 The vertex bi is contained inside Cj if and only if i � j (for i �= j ).

Proof Assume that i < j . Then in addition to the claim as stated we also need to
show that bj is inside Ci if and only if j � i.



The edges uiai and aibi each cross all edges of Cj evenly except that aibi may
cross ujaj oddly. Therefore ui and bi are on opposite sides of Cj if and only if aibi

crosses ujaj oddly. Since ui is outside Cj , it follows that bi is inside Cj if and only
if i � j .

Let Oj be a crossing-free curve from uj to an outer reference point. Since Ojujaj

crosses ui · · ·u2n+1−i oddly, and no edge of ujajbj may cross Ci oddly except pos-
sibly aibi with ujaj , we conclude that Ojujajbj crosses Ci evenly if and only if
aibi crosses ujaj oddly. Therefore bj is outside Ci if and only if i � j . Thus, bj is
inside Ci if and only if i �� j , or j � i. �

Consider an edge bibj of G and � so that i � � � j . By Claim 6.9, the edge bibj

has to cross the boundary of C� oddly, contributing at least w′ odd crossings to ocr.
Moreover, the edge bibj must cross the boundary of the 2-cycle bici oddly: if not,
then bj lies within that 2-cycle, but this is impossible, since none of the edges of
bj cju2n+1−j can cross that 2-cycle oddly, and u2n+1−j is outside it. Hence every
edge bibj contributes w′/2 odd crossings at each of its endpoints. In summary, the
edges of G contribute at least

∑

bibj ∈E(G)

∑

i���j

w′

odd crossings which must be at most k′ − n(n − 1)ww′ = kw′ + m2. Since m2 < w′
we can conclude that

∑

bibj ∈E(G)

∑

i���j

1 < k + 1

so the value is at most k. (Transferring the result to unweighted graphs proceeds as
in the proof of Theorem 2.1.)
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